

Elements of windowing
systems 0 Windowing System:

0 windowing system is a system for sharing a computer's graphical
display resources/ GUI among multiple applications at the same time.

0 Windowing Systems are:
0 Device/Hardware Independent

0 Support Multi tasking

0 Management of independent but simultaneously active applications

0 A windowing system will have a fixed generic language which is called
Imaging Model.

0 Only one program device driver needs to be written for a
particular hardware device

Windowing System
Architecture

The client-server architecture

Toolkits
0 A toolkit provides the programmer with a set of ready-made

interaction objects – alternatively called interaction
techniques, gadgets

0 These objects have a predefined behavior as that described
for the button:

0 The Java toolkit for developing windowed applications is called the Abstract

Windowing Toolkit, AWT

Toolkits (ctd)
0 Toolkits provide Consistency and Generalizability for an interactive

system.

0 One of the advantages of programming with toolkits is that they
can enforce consistency in both input form and output form by
providing similar behavior to a collection of widgets

0 This consistency of behavior for interaction objects is referred to
as the look and feel of the toolkit

Toolkits
0 To provide flexibility, the interaction objects can be modified

0 These objects are modified by --------------

0 Instantiation?

0 Inheritance

0 multiple inheritance?

0 instance attributes?

Programming the application - 1

read-evaluation loop

repeat

 read-event(myevent)

 case myevent.type

 type_1:

 do type_1 processing

 type_2:

 do type_2 processing

 ...

 type_n:

 do type_n processing

 end case

end repeat

Programming the application - II

notification-based
void main(String[] args) {

 Menu menu = new Menu();

 menu.setOption(“Save”);

 menu.setOption(“Quit”);

 menu.setAction(“Save”,mySave)

 menu.setAction(“Quit”,myQuit)

 ...

}

int mySave(Event e) {

 // save the current file

}

int myQuit(Event e) {

 // close down

}

User Interface Management Systems
(UIMS)

0 The set of programming and design techniques which provide
more development support for interactive system design
beyond the toolkits.
0 Examples of UIMS are Serpent & Picasso

0 The UIMS should support:
0 Conceptual Architecture:

0 for the structure of an interactive system which concentrates on a separation
between application semantics/logics and presentation;

0 Techniques:

0 for implementing a separated application and presentation and preserving
the intended connection between them;

0 Support techniques:

0 For managing, implementing and evaluating a run-time interactive
environment

UIMS: Conceptual Architecture

0 Separation between application semantics/logic and
presentation improving:
0 Portability

0 runs on different systems and provides device independent
interface

0 Reusability

0 Reusability of components reduces development costs

0 Multiple interfaces

0 Supports development of multiple interface to access same
functionality

0 Customizability

0 by designer and user without altering core application

UIMS: Conceptual Architecture

Presentation
Dialogue

Control

Functionality

(application

interface)

USER USER APPLICATION

switch

lexical syntactic semantic

Seeheim Model

MVC: model - view - controller

model

view

controller

UIMS: Conceptual Architecture

PAC
presentation - abstraction - control

UIMS: Conceptual Architecture

Multi-Agent Architecture

MVC & PAC Differences/Issues

PAC MVC 0 Groups input and output together.

0 Secondly, PAC provides an explicit
component whose duty it is to see that
abstraction and presentation are kept
consistent with each other.

0 Not linked to any programming
environment, though it is certainly
helpful to an object-oriented approach.
0 It is probably because of this last difference that

PAC could so easily isolate the control component;
PAC is more of a conceptual architecture.

0 whereas MVC separates them

0 MVC does not assign this important
task to any one component, leaving it
to the programmer/designer to
determine where that chore resides

0 Cannot so easily isolate the control
component

Implementation Considerations

0 Dialog Modeling Techniques in UIMS:

0 Menu Networks:

0 Grammar notations

0 State transition diagrams

0 Event Languages

0 Declarative languages

0 Constraints

0 Graphical specification

