

Elements of windowing
0 Windowing Systemsys tems

0 windowing system is a system for sharing a computer's graphical
display resources/ GUI among multiple applications at the same time.
0 Windowing Systems are:
0 Device/Hardware Independent
0 Support Multi tasking
0 Management of independent but simultaneously active applications

0 A windowing system will have a fixed generic language which is called
Imaging Model.

0 Only one program device driver needs to be written for a
particular hardware device

Windowing System
Archltecture

) Client Client Client
Clients Application Application Application
1 2 n
Abstract Abstract Abstract
Terminal Terminal - = = Termin al
1 2 n

Server

l WWindow
2
H mouss WWind o
Devices 1 keyboard
WWindow
n

The client-server architecture

Toolkits

0 A toolkit provides the programmer with a set of ready-made
interaction objects - alternatively called interaction
techniques, gadgets

0 These objects have a predefined behavior as that described
for the button:

\\:hck / ﬁ
S A
=
A

Move Press Release Maove

Figure 8.8 Example of behavior of a button interaction object
0 The Java toolkit for developing windowed applications is called the Abstract
Windowing Toolkit, AWT

Toolkits (ctd)

0 Toolkits provide Consistency and Generalizability for an interactive
system.

0 One of the advantages of programming with toolKits is that they
can enforce consistency in both input form and output form by
providing similar behavior to a collection of widgets

0 This consistency of behavior for interaction objects is referred to
as the look and feel of the toolkit

Toolkits

0 To provide flexibility, the interaction objects can be modified
0 These objects are modified by --------------

0 Instantiation?

0 Inheritance

0 multiple inheritance?
0 instance attributes?

Programming the application - 1

read-evaluation loop

Client
Application

start

(Pa—

read input

Y

process input

Server

A

yes

end

<> Dovicel

repeat
read-event (myevent)
case myevent.type
type 1:
do type 1 processing
type 2:
do type 2 processing
type n:
do type n processing
end case
end repeat

Programming the application - II

[] [] [] b | 3
notificatio Application Notifier
. . , start
void main (String[] args) {
Menu menu = new Menu () rogistor
menu.setOption (* Save”)' Jﬁ%ﬁﬁr
menu.setOption (“Q 104 *
menu.setAction(“Save ,mySave)]» ”
™ ca
menu.setAction (“Quit”, myQuit) J' - notifier ¢‘_____
} Y read input
end *
int mySave (Event e) { < send to
‘ process event appropriate
// save the current file callback

S

int myQuit (Event e) {

allbac
request

// close down > qit?
} \ J
yes

v

User Interface Management Systems
(UIMS)

0 The set of programming and design techniques which provide
more development support for interactive system design
beyond the toolKkits.

0 Examples of UIMS are Serpent & Picasso
0 The UIMS should support:

0 Conceptual Architecture:

0 for the structure of an interactive system which concentrates on a separation
between application semantics/logics and presentation;

0 Techniques:

0 for implementing a separated application and presentation and preserving
the intended connection between them;

0 Support techniques:

¢ For managing, implementing and evaluating a run-time interactive
environment

UIMS: Conceptual Architecture

0 Separation between application semantics/logic and
presentation improving:
0 Portability

¢ runs on different systems and provides device independent
interface

0 Reusability
0 Reusability of components reduces development costs
0 Multiple interfaces

0 Supports development of multiple interface to access same
functionality

0 Customizability
0 by designer and user without altering core application

UIMS: Conceptual Architecture

lexical

USER <—>

Presentation

syntactic

Dialogue
Control

semantic

v

Functionality
(application
interface)

<+— APPLICATION

switch |

Seeheim Model

UIMS: Conceptual Architecture

/

MVC model - view - controller

UIMS: Conceptual Architecture

Abstraction

Figure 8.12 The presentation—abstraction—control model of Coutaz

Presentation

Multi-Agent Architecture

PAC

presentation - abstraction - control

MVC & PAC Differences/Issues

0 GrouprAr(Qut and output together.

0 Secondly, PAC provides an explicit
component whose duty it is to see that
abstraction and presentation are kept
consistent with each other.

Not linked to any programming

environment, though it is certainly

helpful to an object-oriented approach.
0 Itis probably because of this last difference that

PAC could so easily isolate the control component;

PAC is more of a conceptual architecture.

0 whereas MVC seWhVAtes them

0 MVC does not assign this important
task to any one component, leaving it
to the programmer/designer to
determine where that chore resides

¢ Cannot so easily isolate the control
component

Implementation Considerations

0 Dialog Modeling Techniques in UIMS:
0 Menu Networks:
¢ Grammar notations
0 State transition diagrams
0 Event Languages
0 Declarative languages
¢ Constraints
0 Graphical specification

